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Abstract

Three series of tensile relaxation tests are performed on natural rubber filled with various amounts of carbon black.
The elongation ratio varies in the range from 1 = 2.0 to 3.5. Constitutive equations are derived for the nonlinear vi-
scoelastic behavior of filled elastomers. Applying a homogenization method, we model a particle-reinforced rubber as a
transient network of macromolecules bridged by junctions (physical and chemical cross-links, entanglements and filler
clusters). The network is assumed to be strongly heterogeneous at the meso-level: it consists of passive regions, where
rearrangement of chains is prevented by surrounding macromolecules and filler particles, and active domains, where
active chains separate from temporary nodes and dangling chains merge with the network as they are thermally agi-
tated. The rate of rearrangement obeys the Eyring equation, where different active meso-domains are characterized by
different activation energies. Stress—strain relations for a particle-reinforced elastomer are derived by using the laws of
thermodynamics. Adjustable parameters in the constitutive equations are found by fitting experimental data. It is
demonstrated that the filler content strongly affects the rearrangement process: the attempt rate for separation of
strands from temporary nodes increases with elongation ratio at low fractions of carbon black (below the percolation
threshold) and decreases with 4 at high concentrations of filler.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the viscoelastic behavior of carbon black-filled rubbers at isothermal
loading with finite strains. The time-dependent response of particle-reinforced elastomers (rubbery poly-
mers filled with carbon black or silica and solid propellants reinforced by rigid particles) has been a focus of
attention in the past five years (Aksel and Hiibner, 1996; Holzapfel and Simo, 1996; Lion, 1996, 1997, 1998;
Spathis, 1997; Bergstrom and Boyce, 1998; Ha and Schapery, 1998; Reese and Govindjee, 1998; Septanika
and Ernst, 1998a,b; Clarke et al., 2000; Jung et al., 2000; Miche and Keck, 2000; Wu and Liechti, 2000;
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Boukamel et al., 2001; Haupt and Sedlan, 2001; Kim and Youn, 2001; Drozdov and Dorfmann, 2002). This
may be explained by numerous applications of these materials in industry (vehicle tires, shock absorbers,
earthquake bearings, seals, flexible joints, solid propellants, etc.).

The objective of this study is three-fold:

1. To report experimental data in tensile relaxation tests on rubber compounds with various contents of
filler.

2. To derive constitutive equations for the time-dependent response of a particle-reinforced elastomer at
finite strains.

3. To assess the influence of filler fraction on the viscoelastic behavior of filled rubbers by fitting experimen-
tal data at several elongation ratios.

The time-dependent response of a filled rubber is described by using the concept of transient networks
(Green and Tobolsky, 1946; Yamamoto, 1956; Tanaka and Edwards, 1992). A complicated micro-structure
of a rubber compound is modelled as an equivalent heterogeneous network of macromolecules. The net-
work is treated as an ensemble of meso-regions with various potential energies for separation of active
chains from temporary nodes and attachment of dangling chains to the network junctions (physical and
chemical cross-links, entanglements and aggregates of filler).

The following features distinguish the present model from previous studies on the viscoelastic behavior
of temporary networks, see, e.g., Tanaka and Edwards (1992); Drozdov (1997) and Septanika and Ernst
(1998a,b):

1. The ensemble of meso-regions is split into two types of domains: (i) active, where rearrangement of
chains is governed by the Eyring equation for thermally activated processes, and passive, where separa-
tion of chains from temporary junctions is prevented by surrounding macromolecules and aggregates of
filler.

2. The distribution of activation energies for detachment of chains from the network is described by the
random energy model with adjustable parameters independent of mechanical factors.

3. The attempt rate for separation of chains from temporary nodes and the concentration of strands in ac-
tive meso-regions are assumed to be strongly affected by strain. The number of active strands in the tran-
sient network increases and the number of passive strands decreases under stretching.

The exposition is organized as follows. The specimens and the experimental procedure are described in
Section 2. A micro-mechanical model for a filled elastomer is proposed in Section 3. Kinetic equations for
separation of active strands from temporary junctions are developed in Section 4. Stress—strain relations are
derived in Section 5 by using the laws of thermodynamics. Uniaxial extension of a specimen is analyzed in
Section 6. Adjustable parameters in the constitutive equations are determined in Section 7 by fitting ob-
servations. A brief discussion of our findings is given in Section 8. The present approach is compared with
other models for the time-dependent behavior of disordered media in Section 9. Some concluding remarks
are formulated in Section 10.

2. Experimental procedure

Three series of uniaxial tensile relaxation tests were performed at room temperature. ASTM dumbbell
specimens for the first series of tests with overall length 90 mm and width 4 mm and thickness 1 mm in the
active zone were provided by TARRC laboratories (UK). The fraction of carbon black (CB) was 45 phr
(parts per hundred parts of rubber) by weight. These samples were designated as R1. ASTM dumbbell
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specimens for the other two series of experiments with overall length 90 mm and width 4 mm and thickness
2 mm in the active zone were supplied by Semperit (Austria). The fraction of CB in these samples was 20
and 60 phr. These specimens were designated as R2 (20 phr) and R3 (60 phr).

It is assumed by the suppliers that the filler content in rubbery compounds R1 and R2 is below the
percolation threshold, which means that filler particles aggregate in isolated clusters only, whereas the
fraction of carbon black in compound R3 exceeds the threshold, which results in the formation of a secon-
dary network of filler.

Relaxation tests were performed on a testing machine designed at the Institute of Physics (Vienna,
Austria). The devise was equipped by a video-controlling system. To measure the longitudinal strain, two
reflection lines were drawn in the central part of each specimen before loading (with the distance 7 mm
between them). Changes in the distance between these lines were measured by a video-extensometer. The
tensile force was measured by using a standard load cell. The engineering stress, o, was determined as the
ratio of the axial force to the cross-sectional area of a specimen in the stress-free state.

All samples were used as received without thermal pre-treatment. In any test, a specimen was elongated
with a constant rate of engineering strain ¢ = 1.33 x 1072 s~! up to a given elongation ratio 4. According to
Arruda et al. (1995) and Inberg et al. (2002), loading with this strain rate provides nearly isothermal test
conditions. Afterwards, the strain was preserved constant during the relaxation time z = 1 h. This time
slightly exceeds the standard duration of relaxation tests (10° s), but it is substantially less than the
characteristic time for stress-induced aging of rubbers (driven by isomerisation of sulphur cross-links
(Clarke et al., 2000) or mechanically induced diffusion of anti-degradants (Choi, 1998, 2002)).

Each test was performed on a new specimen. Relaxation curves at four elongation ratios, 4; = 2.0,
Ay = 2.5, 43 = 3.0, 44 = 3.5, are depicted in Figs. 1-3. In these figures the engineering stress, o, is plotted
versus the logarithm (log = log,,) of time ¢ (the initial instant ¢ = 0 corresponds to the beginning of a
relaxation test).

Figs. 1-3 demonstrate that the stress, o., monotonically increases with elongation ratio, 4, and the
shape of the relaxation curves is noticeably altered by strain. To compare the relaxation curves quantita-
tively, we develop a constitutive model for the viscoelastic response of particle-reinforced rubbers at finite
strains.
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Fig. 1. The engineering stress 0. MPa versus time ¢ s in a tensile relaxation test with an elongation ratio A. Circles: experimental data for
specimens R1. Solid lines: results of numerical simulation. Curve 1: 4 = 2.0; curve 2: A = 2.5; curve 3: 1 = 3.0; curve 4: A = 3.5.
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Fig. 2. The engineering stress . MPa versus time ¢ s in a tensile relaxation test with an elongation ratio 1. Circles: experimental data for
specimens R2. Solid lines: results of numerical simulation. Curve 1: 2 = 2.0; curve 2: 1 = 2.5; curve 3: 1 = 3.0; curve 4: 1 = 3.5.

Oe

0.0 I | I 1 1
0.5 logt 3.5

Fig. 3. The engineering stress o, MPa versus time ¢ s in a tensile relaxation test with an elongation ratio A. Circles: experimental data for
specimens R3. Solid lines: results of numerical simulation. Curve 1: 2 = 2.0; curve 2: 2 = 2.5; curve 3: 1 = 3.0; curve 4: 1 = 3.5.

3. A micro-mechanical model

A particle-reinforced elastomer is a composite medium consisting of particles of filler and their aggre-
gates randomly distributed in the host material. The average size of carbon black clusters ranges from
several tens to hundreds of nanometers. During preparation of specimens (at the stages of mixing and
vulcanization) three processes take place in filled elastomers:

1. Formation of a secondary network of filler when the content of reinforcement exceeds some threshold
value (Karasek and Sumita, 1996).
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2. Segregation of short chains to the interfaces between the aggregates of filler and the host matrix, which
results in a pronounced decrease in the concentration of junctions in the bulk elastomer, where short
chains serve as physical cross-links (Carlier et al., 2001).

3. Formation of glass-like hard cores around particles and their aggregates (Karasek and Sumita, 1996;
Mandal and Aggarwal, 2001).

Under stretching, a particle-reinforced rubber suffers substantial changes in its micro-structure:

1. Large clusters of filler and the secondary network break-down into pieces, which leads to release of oc-
cluded rubber (a part of the elastomeric matrix whose deformation is screened by surrounding particles
at relatively small strains).

2. Polymeric chains slide along and detach from particles, which results in destruction of rigid cores sur-
rounding clusters of filler and creation of vacuoles.

3. Interactions between macromolecules in the host material are weakened, which leads to acceleration of
stress relaxation, on the one hand, and formation of voids in the host matrix, on the other.

4. Severe straining results in orientation of chains in the direction of maximal stresses and mechanically
induced crystallization of macromolecules.

It is hard to believe that these transformations of morphology can be adequately described by a con-
stitutive model with a small number of adjustable parameters. To develop stress—strain relations, we apply a
method of “homogenization of micro-structure” (Bergstrom et al., 2002). According to this concept, an
equivalent phase is introduced whose deformation captures essential features of the response of a filled
elastomer. To analyze the viscoelastic behavior of a particle-reinfoced rubber, we accept a transient net-
work of macromolecules as the equivalent phase. This approach ascribes the time-dependent response of
filled elastomers to rearrangement of chains in the elastomeric matrix (which, in turn, is substantially af-
fected by the distribution of filler).

The network is assumed to be strongly inhomogeneous, and it is treated as an ensemble of meso-regions
with various strengths of inter-chain interactions. The characteristic length of a meso-region is estimated as
several micrometers that substantially exceeds the radius of gyration for a macromolecule and the average
diameter for a filler cluster, on the one hand, and that is noticeably less than a size of a specimen, on the
other. The heterogeneity of the network is formed at the stage of preparation of specimens, and it is at-
tributed to a spatial inhomogeneity in the distributions of a cross-linker and filler particles.

The network is split into two types of meso-regions: (i) passive, where inter-chain interaction prevents
separation of chains from their junctions, and (ii) active, where active strands (whose ends are bridged to
contiguous junctions) separate from the temporary nodes and dangling strands capture nearby junctions at
random times when they are thermally agitated.

Denote by N, the number of strands (per unit mass) in passive meso-domains and by N, the number of
active strands (per unit mass) in active meso-regions. Deformation of the network induces (i) weakening of
inter-chain interactions at active loading, which results in an increase in the number of active meso-regions,
and (i1) strengthening of interactions between macromolecules at unloading, which implies that rear-
rangement of strands in some active meso-domains becomes prevented by surrounding chains. For an
arbitrary loading process, the quantities N, and N, are treated as functions of time which obey the con-
servation law

Na(t) + Ny (1) = N, ()

where N is the total number (per unit mass) of active strands in active and passive meso-regions. We
suppose that NV is independent of mechanical factors.
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Rearrangement of a temporary network in active meso-domains is treated as a thermally activated
process, whose rate obeys the Eyring equation (Eyring, 1936). In a stress-free medium, the rate of sepa-
ration of an active strand from a junction in an active meso-region with potential energy @ is given by

w
I'(w) =Tyex -—— |,
(@) 0 €Xp ( ks T)
where @ is the activation energy for detachment of strands, kg is Boltzmann’s constant, and the pre-factor
Iy is independent of temperature. Introducing the dimensionless energy for separation,
0
0=-—-,
kg To

where Tj is some reference temperature, and disregarding the influence of small increments of temperature,
AT =T — Ty, on the attempt rate, I';, we present the Eyring equation as follows:

I'(w) = I'yexp(—w). (2)

In what follows, we suppose that Eq. (2) remains valid for an arbitrary loading process, provided that the
attempt rate, Iy, is a function of the current strain.

The distribution of active strands in active meso-regions is determined by the probability density p(w):
the quantity N,(¢)p(w)dw equals the current number of active strands (per unit mass) whose potential
energies for separation, ', belong to the interval [w, w + dw).

4. Rearrangement of active strands

Detachment of active strands from temporary nodes and merging of dangling strands with the network
are entirely described by the function n(z, 7, ) that equals the number (per unit mass) of active strands at
time ¢ in active meso-regions with potential energy @ which have last been bridged to the network before
instant 7 € [0, {].

The quantity n(t, ¢, ®) equals the number of active strands (per unit mass) with the energy for separation
w at time ¢,

n(t,1,w) = Ny(t)p(w). (3)
The function

o) = 5 n0)| @)

is the rate of reformation for dangling chains: the amount y(z, w)dt equals the number of dangling strands

(per unit mass) in active regions with potential energy w that merge with the temporary network within the
interval [z, t + dt]. The quantity
0
6_: (t,7,w)dr
is the number of these strands that have not detached during the interval [z,¢]. The amount

on

—— (2,0, w)dt
5 (10, ®)

is the number of active strands (per unit mass) that separate (for the first time) from the network within the
interval [z, ¢ + d¢]. Finally, the quantity
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~30c

is the number of strands (per unit mass) that have last been linked to the network within the inter-
val [t,7+dr] and separate from the network (for the first time after merging) during the interval
[t,t+d1].

The rate of separation, I', is determined as the ratio of the number of active strands detaching
from temporary nodes per unit time to the total number of active strands. Applying this definition to
active strands merging with the network within the interval [z, 7 4 dz], we arrive at the differential equa-
tion

t,t,w)dtdr

*n on
— (¢ =—I(t — (¢ 5
atar(vr)w) (70))6‘5(717&))7 ()
where the first argument of the function I'(¢, w) accounts for the effect of time-dependent strain on the
attempt rate Iy in Eq. (2).

Rearrangement of strands linked to temporary junctions in the stress-free state is governed by the fol-
lowing processes:

1. Thermally activated detachment of active strands from temporary nodes.
2. Stress-induced activation of passive meso-regions under active loading.

Evolution of the function n(z,0, ®) is described by the kinetic equation

on B dn,
2(1,0,0) = ~T (1, 0)n(t,0,0) - 2 (Op(o). (©)
Integration of Egs. (5) and (6) with initial conditions (3) (where we set ¢t = 0) and (4) implies that
t t t
n(t,0, ) = {Na(O) exp {— / I'(s, ) ds} _ / %(f) exp [— / I'(s, ) ds] d‘c}p(w), (7)
0 0 T
on !
" t,5,0) = 9(z,0) exp [— / I'(s, ) ds} ®)

To exclude the function y(¢, w) from Eq. (8), we use the identity
" on
n(t, t,w) = n(t,0,w) +/ — (¢, 7, w)dr.
0 aT

Substitution of expressions (3), (7) and (8) into this equality results in
t t t
N.(t)p(w) = {Na(O) exp [—/ I'(s,w) ds} —/ %(r) exp [—/ I'(s,w) ds] dr}p(w)
0 0 T
t t
+/ y(t, w) exp [—/ (s, co)ds] dr. 9)
0 T

The solution of the integral equation (9) together with Eq. (1) reads
V(tv CL)) = Na(t)r(ta w)p(w)
It follows from this equality and Eq. (8) that

%(z,r,w) = N,(0)I (7, w)p(w) exp {— /Tt I'(s,w) ds} (10)
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5. Constitutive equations

We adopt conventional assumptions that (i) the excluded-volume effect and other multi-chain effects
are screened for an individual chain by surrounding macromolecules, and (ii) the energy of interaction
between strands can be taken into account with the help of the incompressibility condition (Tanaka and
Edwards, 1992). We also accept the affinity hypothesis that disregards thermal oscillations of junctions and
presumes that the deformation gradient for the motion of junctions at the micro-level coincides with the
deformation gradient for the motion of appropriate points of an elastomer at the macro-level (Yamamoto,
1956).

At isothermal deformation, meso-regions in the network are treated as isotropic incompressible media.
The strain energy per strand in a passive meso-domain, w, is assumed to depend on the first two principal
invariants [, (k =1,2) of the right Cauchy tensor, Cy(¢), for transition from the reference state to the
deformed state at time ¢,

w(t) = w(li(Co(1)), L(Co(2)))-

A conventional hypothesis is accepted that stress in a dangling strand totally relaxes before this strand
captures a new junction (Tanaka and Edwards, 1992). This implies that the stress-free state of an active
strand that merges with the network at time 7 > 0 coincides with the deformed state of the network at that
instant. The strain energy, wy(¢,0), of an active strand that has not separated from the network during the
interval [0, 7], depends on the first two principal invariants of the right Cauchy tensor Cy(¢),

wo(,0) = w(L,(Co(1)), L2(Co(2)))-
For an active strand that has last been reformed at time 7 € [0, 1],
wo(t,7) = w(li(C(t,7)), L(C(2,7))),

where C(¢,7) is the relative right Cauchy tensor for transition from the deformed state at instant 7 to the
deformed state at time ¢ > 7. The same function, w, is used to describe strain energies of strands in various
meso-domains, which is assumed to vanish in the reference state,

W([17[2)|1]:3,12:3 =0. (11)

We do not dwell on an explicit expression for the function w. For a survey of strain energy densities of
rubber-like materials, the reader is referred to recent reviews by Boyce and Arruda (2000) and Kloczkowski
(2002).

Confining ourselves to active loading processes (i.e., excluding from the consideration transition of
active meso-domains into the passive state driven by mechanical factors), we sum the mechanical ener-
gies of strands in passive meso-domains and those of active strands in active meso-regions (that merged
with the network at various times t € [0,¢]), and find the strain energy density per unit mass of an elas-
tomer

w(t) = |:Np(t) + /Oc”n(t,o,w) dw] w(I1(Co(1)), L(Co (1))
! > On
+/0 [/0 a(t,I,w)dw]W(ll(C(t,r)),IZ(C(tJ)))dT_ 12)

Differentiating Eq. (12) with respect to time and using Egs. (5), (6) and (11), we obtain

0 =r+ v - i), (13)
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where
70 = (M0 + [ ntn0.01d0] | 5 €D B0 G (Co0)
+ S (0. B(C0) T ()|
U(t) = /Ot [/OOC %(z,r,w) da)] [2—2}(1] (C(t,7)), L(C(s, r)))%(C(r, 7))
(1)
ow 6[2
+ S (), B(C(0) (€| b

Y(t) = [/Ow I'(t,w)n(t,0,w) dw} w((Co(2)), 1 (Co(1)))

][ reo$ e o o] s, mew

The functions n(z,0, ) and 0n/01(¢, 7, w) are non-negative: they stand for the number (per unit mass) of
active strands that have not been detached from the network during the interval [0,¢] and for the number
(per unit mass) of strands merged with the network at instant t € [0, #] and remaining active up to time ¢,
respectively. Because the rate of breakage of active chains, I', and the potential energy per chain, w, are also
non-negative (the latter follows from Eq. (11)), the last equality in Eq. (14) implies that the function Y (¢) is
non-negative for an arbitrary deformation program.

The derivatives of the principal invariants, [, (k = 1,2), of the relative right Cauchy tensor are given by
(Drozdov, 1996)

%(C(r, 7)) = 2B(t,7) : D(2),
(15)

% (C(t,7)) = 2[1(C(1,7))B(t,7) — B(1, o] : D),

where B(z, 7) is the relative left Cauchy tensor for transition from the deformed state at time t to the de-

formed state at time z, D(¢) is the rate-of-strain tensor, and the colon stands for convolution of tensors.
Substitution of expressions (15) into Eq. (14) implies that

U(t) =2A() : D(2), (16)
where
A(t) = /0 {/OOO 2—Z(t,r,a)) dw] [, (2, 7)B(1, ) + s (1, 7)B(1, 1) dr,
and the functions ¢, (¢,7) and ¢, (¢, 7) read
ow

b1(1,7) = = (1(C(1, 7)), L(C(1, 7)) + L(C(z, T))afw

al, o (I(C(t,7)),L(C(t,7))),

w
$2(t,7) = =5 (h(C(5:7)), L(C(1, 7).
By analogy with Eq. (16), we find from Eq. (14) that

V() =2 {Np(t) + /0 " (1,0, 0) dw] A7) : D(1), (17)
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where Ag(t) = W, (£)Bo(2) + ¥, (£)BE(¢), Bo(¢) is the left Cauchy tensor for transition from the reference state
to the deformed state at time ¢, and the functions ¥, (¢) (k = 1,2) are given by

ow ow

400 = S (Cal0).E(Cof0) +1(Calt) g (h (Co(0), B Co0),
(1) = — g1 ((Co(0),BACo (1),

It follows from Egs. (13), (16) and (17) that

dw

5 (0 ="2H(0) : D() - Y(1) (18)

with
H(¢) = A(t) + Ao() [Np(t) + /OOO n(t,0,) dw] :

For isothermal deformation of an incompressible medium, the Clausius—-Duhem inequality reads

_d_W+lZ’;D>0’
dt p

Q =
where p is mass density, ¥’ is the deviatoric component of the Cauchy stress tensor X, and Q is the internal
dissipation per unit mass. Substitution of Eq. (18) into this equality results in

Q:%(E/—2pH):D+Y>O. (19)

Because the function Y(¢) is non-negative, Eq. (19) is satisfied for an arbitrary deformation program,
provided that the expression in brackets vanishes. This implies the constitutive equation

L(t) = —P()I + Zp{ {Np(t) + /Ox n(t,0, ) dw} [, ()Bo(2) + Y, (1) B3 (1)]
S e[ + b om0, (20)

where P is pressure.

The stress—strain relation (20) is determined by the strain energy density w(/;, ), the rate of separation
of active strands I'y and the function N, that determines mechanically induced activation of passive meso-
regions. When I'y = 0 and N, is constant, Eq. (20) is transformed into the Finger formula for the Cauchy
stress tensor in an isotropic and homogeneous hyperelastic solid. When both I'y and N, are constant, Eq.
(20) is reduced to the BKZ constitutive equation (Bernstein et al., 1963) for a viscoelastic medium with a
strain-independent relaxation spectrum. For a constant &, and an attempt rate, I'y, dependent on the first
two principal invariants of the relative right Cauchy tensor C, Eq. (20) generalizes the Wagner equation
(Wagner, 1976; Wagner et al., 1979) for the time-dependent behavior of polymeric melts. Finally, when
both N, and I'; become functions of strain, Eq. (20) allows mechanically induced changes in the relaxation
spectra and strengthening (weakening) of the viscoelastic response of elastomers to be predicted in a unified
manner.
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6. Uniaxial tension of a bar

Points of a bar refer to Cartesian coordinates {X;} in the stress-free state and to Cartesian coordinates
{x;} in the deformed state, (i = 1,2, 3). Uniaxial tension of an incompressible medium is described by the
formulas

X1 = k(f)X], Xy = k7(1/2>(l)X2, X3 = k7<1/2)(l)X3,
where k = k(f) is the extension ratio. The left Cauchy tensor, By(¢), and the relative left Cauchy tensor,

B(¢,7), are given by

Bo(l) = kz(t)elel + k(lt) (ezez + 6383),
k(2)

B(t, T) = (m) €€ +%(6262 +e3e3)7

where e; are base vectors of the frame {X;}. To find the non-zero components X, (k = 1,2) of the Cauchy
stress tensor

(21)

X =2Xee + 2(ee; + ese;),

we substitute of expressions (21) into Eq. (20) and exclude the unknown pressure, P, from the boundary
condition X, = 0. The longitudinal stress ¢ = X reads

a(t) = zp{ [Np(t) + /OOQ n(t,0,) dw] [, () + ¥ () (P () + k()] [ () — k7' (1)]

o[ [ Seeonfarfoen oo (5) <53 ) || (H9) 5]}
(22)

To compare results of numerical simulation with the experimental data, we focus on a standard relaxation
test with

I, t<0,

where 4 > 1 is a constant. Substitution of Eq. (23) into Eq. (22) results in the following expression for the
engineering stress g. = g/4:

oo(t,2) = 2p [Np(z) + /0 " n(t,0, ) dco] [y (2) + ¥ () (A2 + 2] (=272, (24)

where the quantities N, Y, and y, become functions of the elongation ratio L. It follows from Egs. (1), (2)
and (7) that for the deformation program (23), the function n(z,0, w) reads

n(t,0,w) = N, (1) exp[— Ty (1) exp(—w)t]p(w).

This equality together with Egs. (1) and (24) implies that

0ult, ) = aou){l — k) [ 1= e (= Ta(i) expl( = 0)0p(o) dw}, (25)



5710 A.D. Drozdov, A. Dorfmann | International Journal of Solids and Structures 39 (2002) 5699-5717

where
oo(1) = 2pN [‘//1 (2) +¥,(4) (AZ + [1)] (4 — 2, k(4) = NdTw

To fit experimental data, we adopt the random energy model (Derrida, 1980) for the distribution of active
meso-regions with various activation energies

(26)

(0 —Q)°

w =0, plw)=0 <0, 27
232

p(o) = poexp [ -

where Q and X are adjustable parameters of the quasi-Gaussian probability density, and the constant py is
determined by the condition

/Oxp(a)) do =1. (28)

To rationalize the choice of the distribution function (27), we refer to the fact that (according to the
central limit theorem) the cumulative effect of a large number of independent random factors may be
adequately described by a Gaussian distribution. Among these factors, we would mention different types of
junctions between chain ends, adsorption of chains to surfaces of filler particles, segregation of short chains
to clusters of particles, formation of physical cross-links between macromolecules in the elastomeric matrix,
mechanically induced transformations of chemical cross-links, etc.

Given an elongation ratio, 4, Egs. (25) and (27) are determined by five material constants:

the apparent average potential energy for separation of strands from temporary junctions £,

the apparent standard deviation of potential energies for detachment of strands in active meso-regions X,
the attempt rate for separation of active strands from temporary nodes I,

the concentration of active meso-domains x,

the stress at the beginning of the relaxation process ay.

Al e

The number of experimental constants in Eqs. (25) and (27) is quite comparable with that in phe-
nomenological stress—strain relations conventionally employed to fit observations in relaxation tests (based
on the generalized Maxwell model with several relaxation times, on the stretched exponential function, or
on the rheological modes with fractional derivatives). An advantage of Eqs. (25) and (27) is that the ad-
justable parameters have a transparent physical meaning (unlike the orders of fractional derivatives in
fractional differential equations or the exponent in the Kohlrausch—Williams—Watt function).

Our aim now is to find the adjustable parameters by matching the relaxation curves depicted in Figs. 1-3.

7. Fitting of experimental data

Egs. (25) and (27) imply that

alt.2) = )+ mCa(d) [ "1 = exp (= Fo(A) exp( — @))] exp [ S0 o, (29)
where
Cl(2) = 00(2),  Co(2) = —ao(A)K(). (30)

It follows from Eq. (29) that the attempt rate, Iy, and the apparent average potential energy, 2, are
mutually dependent. Indeed, an increase in Q by € induces shift w — w + 6Q of activation energies, which
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is tantamount by the replacement of I'y by I'oexp(dQ) in Eq. (29). For definiteness, we choose some
elongation ratio, 4 = J;, for any rubber compound and set I'¢(4;) = | s in the approximation of experi-
mental data.

First, we match the relaxation curves for rubber compound R1. We begin with fitting the experimental
data measured at the elongation ratio 4; = 2.0. Under the condition I'y(4;) = 1 s, the relaxation curve is
determined by 4 experimental constants, Q, X, C; and C,. To find these quantities, we fix some intervals,
[0, Qunax] and [0, X0x], where the “best-fit” parameters Q and X are assumed to be located, and divide these
intervals into J subintervals by the points Q; =ido and X; = jdy (i,j=1,...,J) with dg = Qunax/J,
Ay = Zax/J. For any pair, {Q;, X}, we evaluate the integral in Eq. (29) numerically (by Simpson’s method
with 200 points and the step 4,, = 0.2). The pre-factor pj is found from Eq. (28). The coefficients C; = C (i, j)

and C, = C,(i, ) are calculated by the least-squares method from the condition of minimum of the function
2

S(i,)) = Z [UeXp(tm) - Unum(tm)] ) (31)
n
where the sum is taken over all experimental points #,. The stress o.,, in Eq. (31) is the engineering stress
measured in the relaxation test, whereas the stress o, is given by Eq. (29). The best-fit parameters Q2 and ~
minimize the function ¢ on the set {Q;,>; (i,j =1,...,J)}. After determining the best-fit values, Q; and X,
we repeat this procedure for the new intervals [Q;_;, Q:+1] and [2,_;, 2;41] to ensure an acceptable accuracy
of fitting.

To match the relaxation curves at higher elongation ratios, 4;, we fix the constants 2 and X found by
fitting observations at A, and approximate any relaxation curve by using three adjustable parameters, Iy, C;
and C,. These quantities are determined by an algorithm similar to that employed in the approximation of
the relaxation curve at 4;. We fix an interval [0, '], where the best-fit attempt rate I'y is supposed to be
located, and divide this interval into J subintervals by the points I'; = idr (i = 1,...,J) with Ar = Fyax/J.
For any I';, we evaluate the integral in Eq. (29) numerically and find the coefficients C, = C,(i) and
C, = Cy(i) (that minimize the function (31)) by the least-squares method. The best-fit attempt rate mini-
mizes the function # on the set {I;(i=1,...,J)}. After finding this best-fit value, I';, the procedure is
repeated for the new interval [I';,_j, I';;1] to provide an acceptable accuracy of the approximation. Fig. 1
demonstrates fair agreement between the experimental data and the results of numerical simulation with
Q =6.66 and X = 10.12 at all elongation ratios.

The same procedure is applied to approximate the relaxation curves for specimens R2 and R3. The only
difference is that we use the step 4, = 0.08 to evaluate the integral in Eq. (29) and begin matching ob-
servations from the relaxation curve measured at the maximum elongation ratio 4, = 3.5 (which means that
we postulate I'g(44) = 1 s). The best-fit parameters Q and X read 6.27 and 5.68 for samples R2 and 7.06 and
4.44 for specimens R3, respectively. Figs. 2 and 3 show good correspondence between the observations and
the results of numerical analysis.

For the distribution function (27), the parameters 2 and X do not coincide with the average potential
energy for detachment of active strands, €, and the standard deviation of potential energies for separation
of strands from the network, X,. The latter quantities read

1/2

o= [ opo)do, - { | - arpwas| (32)

The dimensionless parameters Q,, X, and & = X,/Q, given by Eq. (32) are listed in Table 1, which shows
that the width of the quasi-Gaussian distribution (characterized by the ratio £) changes rather weakly.

For any elongation ratio, /J;, the attempt rate, I'o(4;), is determined by matching an appropriate re-
laxation curve. The fraction of active meso-domains, k(4;), is found from Eq. (30),

=G
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Table 1

Adjustable parameters Q,, X, and &
Sample Qo 2y ¢
R1 10.96 7.34 0.67
R2 7.11 3.99 0.56
R3 7.34 3.68 0.50

K ~

0.0 1 | I 1 1 1 I I I
0.0 L —3 10.0

Fig. 4. The concentration of active meso-regions k versus the first invariant /; of the right Cauchy tensor. Symbols: treatment of
observations. () R1; (O) R2; (@) R3. (—) approximation of the experimental data by Eq. (33).

1.0

logTy L

—-1.0 ! | | 1 ] 1 | I |
0.0 I, —3 10.0

Fig. 5. The attempt rate I'y s~! versus the first invariant /; of the right Cauchy tensor. Symbols: treatment of observations. () R1; (O)
R2; (@) R3. (—) approximation of the experimental data by Eq. (33).

These quantities are plotted in Figs. 4 and 5 versus the first invariant, /; = 2> + 2", of the right Cauchy
tensor Cy. The experimental data are fitted by the phenomenological equations
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Table 2
Adjustable parameters ay, a;, by and b,
Sample apy ay bo bl
R1 0.49 0.017 -0.23 0.104
R2 0.14 0.021 -0.55 0.052
R3 0.26 0.013 0.91 —-0.079
Kk =ay+a (I, —3), logly=by+ bl —3), (33)

where the coefficients @; and b; (i = 0,1) are found by the least-squares method. Figs. 4 and 5 show an
acceptable agreement between the observations and their approximations by Eq. (33) with the parameters
a; and b; collected in Table 2. The choice of the amount /; — 3 in the presentation of experimental data in
Figs. 4 and 5 may be explained by the fact that this quantity is proportional to the mechanical energy of an
elastomeric network within the classical theory of rubber elasticity (Kloczkowski, 2002).

8. Discussion

Figs. 1-3 reveal good agreement between the measured relaxation curves and the results of numerical
simulation based on the assumption that the distribution function of meso-domains with various activation
energies, p(w), is strain independent. Because this function characterizes the relaxation spectrum of spec-
imens, we conclude that the distribution of relaxation times for filled rubbers under investigation is inde-
pendent of mechanical factors.

According to Table 1, the relaxation times are weakly affected by the content of filler. The three-fold
growth of the fraction of carbon black (from 20 to 60 phr) implies an increase in the average potential
energy for detachment of strands by 3% and a decrease in the width of the distribution of potential energies
by 11%.

Fig. 4 demonstrates that the concentration of active meso-regions, where rearrangement of strands
occurs, monotonically grows with elongation ratio. With reference to Table 2, we conclude that the initial
fraction of active meso-domains strongly depends on the chemical formulation of rubber compounds (the
parameter ao varies from 0.14 to 0.49). For the same chemical composition of a particle-reinforced elasto-
mer, it noticeably increases with filler content (from 0.14 at 20 phr to 0.26 at 60 phr of carbon black). This
conclusion is in agreement with observations by Aksel and Hiibner (1996) which revealed that an increase
in the volume fraction of filler dramatically enhanced stress relaxation. The coefficient @, that describes the
effect of stretching on the concentration of active meso-domains weakly depends on composition of the
rubber compounds. A decrease in a; is observed with the growth of the filler content (from 0.021 for
specimens R2 to 0.013 for samples R3), which may be explained by the influence of the secondary network
of filler in rubber R3 that prevents mechanically induced activation of passive meso-regions.

Fig. 5 shows that the attempt rate, I'y, increases with elongation ratio for specimens R1 and R2. The
growth of the attempt rate is in agreement with the free volume concept (Knauss and Emri, 1987; Losi and
Knauss, 1992; O’Dowd and Knauss, 1995), which ascribes an increase in the relaxation rate with strain to
an increase in the free volume per macromolecule (that, in turn, enhances molecular mobility). The effect of
stretching on the attempt rate is characterized by the coefficient a; that accepts similar values (0.104 for R1
and 0.052 for R2) for the two grades of particle-reinforced rubbers. In contrast, the attempt rate for
specimens R3 decreases with strain. The difference in the influence of mechanical factors on the attempt rate
for specimens R2 and R3 may be attributed to the presence of a secondary network of filler in rubber
compound R3.
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Comparison of Figs. 2 and 3 shows that the formation of the secondary network in compound R3
implies a substantial growth of stress, which means that this secondary network carries out a large part of
the applied load. Under stretching, a part of the secondary network is fragmented into pieces (individual
particles and small clusters of filler), which serve as extra physical cross-links in active meso-regions. These
cross-links resist separation of active chains from temporary nodes, which results in slowing down of the
rearrangement process.

9. Comparison with other models

The scenario for the viscoelastic response of particle-reinforced elastomers proposed in this study is
based on the following hypotheses:

1. Filled rubber may be treated as an ensemble of meso-regions that are rearranged independently of each
other.

2. The rearrangement process is thermally activated, and its rate obeys by the Eyring equation.

3. Mechanical factors affect the distribution of meso-domains with various potential energies, which is re-
flected by activation of passive meso-regions.

Our purpose now is to compare these assumptions with postulates employed in other models for the time-
dependent behavior of disordered media, where relaxation of stresses is associated with rearrangement of
structural units. In this analysis we disregard the physical nature of relaxing units (which is different for
elastomers and, for example, structural glasses) and concentrate on the kinetics of rearrangement exclu-
sively.

In the Gilroy—Phillips (GP) model (Gilroy and Phillips, 1981; Buchenau, 2001), the viscoelastic response
of a glass is attributed to hops of flow units (trapped in potential wells on the energy landscape) from one
minimum of a double-well potential to another over an energy barrier. The hops are driven by thermal
fluctuations, whereas the depths of the asymmetric wells are assumed to be strain dependent. An ensemble
of potential wells is entirely described by the distribution of heights of energy barriers (similar to the
distribution function, p(w), for meso-regions with various activation energies) and by an analog of the
Eyring formula (2) for the rate of hops over energy barriers. For a uniaxial relaxation test with small strains
(which corresponds to the case when mechanically induced activation of passive meso-domains is pre-
vented), Eq. (14) of Buchenau (2001) coincides with Eq. (25) of the present work, where « and I'y are taken
to be strain independent. However, for more complicated deformation programs (three-dimensional
loadings or one-dimensional loadings with finite strains), the GP concept fails to predict the mechanical
response, because no information is available on how the double-well potential is affected by the strain
tensor.

According to a soft glassy rheology (SGR) model (Sollich et al., 1997; Sollich, 1998; Fiedling et al.,
2000), a disordered medium is treated as an ensemble of relaxing units located in potential wells (with
various depths) on the energy landscape. Under loading, any unit rises from the bottom of its potential well
to a higher energy level (which is proportional to the strain energy stored by the unit). The viscoelastic
response is associated with thermally activated hops of relaxing regions in their potential wells. When a unit
reaches some liquid-like energy level, it is rearranged (which means that it accepts the current state of a
deformed medium as its new reference state) and it randomly chooses a new potential well on the energy
landscape to be trapped. Evolution of the concentration of relaxing units located in cages with various
potential energies is described by the Bouchaud equation (Bouchaud, 1992) appropriately modified to
account for the effect of mechanical energy on the rate of rearrangement of relaxing elements. A disad-
vantage of the SGR concept is that it implies a nonlinear viscoelastic response even at very small strains,
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whereas elastomers demonstrate the linear time-dependent behavior at relatively small deformations.
Another shortcoming of this approach is that the SGR model implies changes in the population of traps
with various potential energies (mechanically induced aging of a disordered material), whose rates are
comparable with the characteristic rate of stress relaxation (the latter is not confirmed by observations on
rubbery polymers).

Finally, it is worth mentioning some similarities between our scenario for strain-induced activation of
passive meso-regions in filled elastomers and a version of the concept of transient networks proposed by
Wang (1992) and Ahn and Osaki (1995) to predict shear thickening of polymeric solutions. The difference
between the two approaches is that in the Wang model, deformation of a polymeric medium results in
merging of chains with two free ends with a transient network, whereas, according to our concept, strands
(that were permanent in the stress-free state) begin to separate from temporary nodes under loading.

10. Concluding remarks

Relaxation curves have been reported for three commercial grades of CB-filled natural rubber in tensile
relaxation tests at room temperature. A constitutive model has been derived for the nonlinear viscoelastic
response of particle-reinforced elastomers at finite strains. A complicated micro-structure of filled rubber is
modelled as an equivalent transient network of macromolecules. The network is assumed to be strongly
heterogeneous, and it is treated as an ensemble of meso-regions with various activation energies for sep-
aration of strands from temporary nodes. Two types of meso-domains are introduced: passive, where re-
arrangement of strands is prevented by surrounding chains and filler clusters, and active, where the
rearrangement process is governed by the Eyring equation. Deformation of a rubber compound (i) leads to
activation of passive meso-regions and (ii) alters the attempt rate for detachment of active strands from the
network. Adjustable parameters in the stress—strain relations are found by fitting observations in relaxation
tests at elongations up to 350%. Fair agreement is demonstrated between the experimental data and the
results of numerical simulation. The following conclusions are drawn:

1. The random energy model with strain-independent parameters 2 and X ensures fair agreement between
the observations and the results of numerical simulation. The average activation energy for detachment
of active chains from temporary junctions is strongly affected by the chemical formulation of rubber
compounds, whereas the width of the quasi-Gaussian distribution function (27) weakly changes with
the filler content.

2. Stretching of specimens results in mechanically induced activation of passive meso-regions. The concen-
tration of active meso-domains linearly increases with the first invariant of the right Cauchy tensor. The
rate of growth of x decreases with the content of particles, which is attributed to the influence of the
secondary network of filler that resists activation of passive domains.

3. At low concentrations of filler, the attempt rate exponentially grows with the first invariant of the right
Cauchy tensor. This increase is ascribed to the growth of the free volume per macromolecule that en-
hances molecular mobility. When the content of particles exceeds the percolation threshold, the attempt
rate for separation of strands from temporary nodes decreases with elongation ratio, which may be ex-
plained by fragmentation of the secondary network of filler into individual particles and small clusters
which serve as extra cross-links in active meso-domains.

It should be noted that some important questions remained beyond the scope of the present work. In
particular, the effects of (i) a test’s temperature, (ii) aggregation of CB particles, and (iii) interactions be-
tween CB clusters and the host matrix on the viscoelastic behavior of a particle-reinforced elastomer have
not been analyzed in detail. These issues will be the subject of subsequent studies. An attempt to analyze the
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influence of temperature on the viscoelastic behavior of a transient polymeric network has recently been
undertaken in Drozdov and Christiansen (2002).
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